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2a. OBJECTIVES

(1) Define the properties of visual channels that are likely to be

important in aviation.

(2) Define the visual display features of a flight simulator that

contribute to good transfer of training by stimulating the visual channels used

in real flying.

(3) Find how visual channel- or form, depth and motion operate when the

eyes are moving and when the angle of convergence of the eyes is changing.

(4) Find the effect of eye movements upon visual judgments of the

direction of self-motion.

(5) In particular, define how motion parallax distinguishes figure from

ground.

(6) By using radar-tracked aircraft, find whether the correlations between

flying performance and visual test results found using the ASPT flight

simulator apply to aircraft performance.

(7) Design new tests for (a) selecting student pilots and (b) monitoring

the visual abilities of experienced pilots so as to aid in-service retraining

programs for maintaining an adequate level of performance. These tests will

measure the sensitivities of the information-processing channels already

identified in Objective #1 as likely to be important in practical flying.

(8) By following the progress of student pilots, identify visual tests

* that predict which student pilots who, having passed conventional visual tests,

nevertheless will fail to acquire flying skills. -
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2b. STATUS OF THE RESEARCH EFFORT

Spatial vision: extraction of figure from ground by motion

It is well known that some objects that cannot be seen in the absence of

motion become visible when there is relative motion between the object and its

background. A practical example is that grassy hillocks and ridges that cannot

be seen from a hovering helicopter can become clearly visible when the

helicopter is moving.

Figure 1 illustrates a laboratory version of such a target. These are

photographs of a dot pattern on a CRT. A contains a camouflaged rectangle. In

3 and C the dots within this rectangle move and the rectangle becomes visible

(the moving dots appear as streaks in the two exposures). The boundaries or

edges of the rectangle are made visible (i.e. the camouflage is broken) by

motion: in the absence of motion the rectangle is invisible. Compare this

with a conventional target. A conventional target's boundaries are brightness

steps. Clearly, these are two quite different types of object. One is defined

by motion steps, the other by brightness steps.

We, and others, have previously explored target visibility produced by

abruptly displacing part of a dot pattern (Regan & Spekreijse, 1970; Julesz,

1971; Braddick, 1974; Baker & Braddick, 1981). Providing that the abrupt

displacement does not exceed about 20 min arc and take longer than 100 msec,

the "short range" process operates so that the target's camouflage is broken

and it becomes visible. However, these previous studies did not use continuous

motion, and thus confounded the effects of dot displacement and stimulus

duration. Our present study uses continuous velocity and explores the effect

of velocity on target visibility, looking at temporal and spatial summation in

fovea and periphery (Regan & Beverley, submitted).

4
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Figures 2 and 3 compare target parafoveal detection thresholds for: (a) a

dot target whose edges are defined by motion contrast, and (b) a conventional

target whose eyes are defined by luminance contrast. Figure 2 shows how target

detection thresholds depend on stimulus area. The lines are theoretical fits

assuming that receptive fields have gaussian sensitivity profiles. Receptive

field area is about 5 times larger for targets whose boundaries are defined by

motion contrast, the areas for camouflaged targets being about 0.16 deg 2 in the

parafovea.

Figure 3 shows how target detection threshold depends on presentation

duration. The line in Figure 3B is a theoretical fit assuming a single stage

exponential integration process. The time constant is 60 msec, consistent with

classical data. The theoretical curve fitting the new data in Figure 3A

assumes a two-stage exponential integration process. The first stage has the

same time constant as the luminance integration stage of Figure 3B. The second

stage has a time constant of 750 msec. Thus, temporal integration extends over

about 12 times longer duration for a target whose edges are defined by motion

contrast than for a target whose edges are defined by luminance contrast.

Figure 4 shows how target detection threshold is affected by blur for a

dot target whose boundaries are defined by motion contrast. Motion thresholds

are also shown on this figure. Ordinates plot thresholds, and abscissae plot

the powers of lenses placed before the eye. Zero on the abscissa corresponds

to a sharply focussed foveal image. Figure 4 shows that visual sensitivity was

best for a sharply accommodated target, and that sensitivity fell off as blur

increased. This finding held at all eccentricities tested (0 dog, 4 deg, 8

deg, 16 deg, 24 deg). In all subsequent measurements it was ensured that the

eye was correctly refracted at each eccentricity tested.

4
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Figure 2 -E ffects of target area. A is for camouflaged targets whose
boundaries were defined by relative motion, and 3 is for conventional
targets whose boundaries were defined by lumitnance contrast. The
curves in A and B are theoretical fits assuming a gaussian sensitivity
profile for summation fields. Spatial summation area is about 5 times
larger for targets defined by relative motion (A) than for targets
defined by luminance contrast (3). Targets were square and presented
for 150 asA.
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conventional targets whose boundaries were defined by luminance
contrast. The dotted line in A plots a constant-displacement law,
displacement being 1 min arc. The curves in 3 are theoretical fits
assuming a single integration time constant T 1 " The theoretical
curves in A assume a two-stage temporal integration, the same time
constant T, being followed by a time constant T over 12 times lar er.
The rectangular targets were of constant shape (K = 2.8) and 1 deg
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Figure 5 shows how thresholds varied as a function of eccentricity for

different target areas. Log threshold was linearly proportional to

eccentricity between 0 deg and 32 deg eccentricity at least. The slope of the

plot depended on target area, sensitivity to larger targets being less affected

by eccentricity. Receptive field sizes were estimated from the Figure 5 data.

First the data were replotted as threshold versus stimulus areea for different

eccentricities. In fitting the theoretical curves in Figure 6 we assumed that

the receptive fields for target detection had gaussian sensitivity profiles.

The data points fit this assumption fairly well. Summation field diameters

calculated on this basis are plotted in Figure 7. Field size for target

detection is roughly linear with eccentricity on log-linear paper. Field size

for motion discrimination is roughly constant at 1 deg - 2 deg over a broad

range of eccentricities between 3 deg and 24 deg. This is very different from

the situation for acuity where field size scales linearly with eccentricity.

Spatial vision where boundaries are defined by hue differences

The boundary of an object may be defined by luminance contrast alone or by

motion contrast alone as in the study reported above. It may also be defined

by chromatic contrast alone. It is known that boundaries defined by chromatic

contrast can disappear when the retinal image is stabilized by voluntary

fixation (McCree, 1960a,b) or by using stabilization apparatus (Clowes, 1962).

Thus, temporal changes are necessary for such boundaries to be visible. In a

joint study carried out at Dalhousie University, Dr. C. A. Burbeck and I

investigated what temporal changes are adequate to restore boundary visibility.

The stimulus was a 2 deg x 2 deg area divided vertically into two halves.

The left side was set at some reference wavelength. The 2 deg x 2 deg area was

surrounded by an unstabilized dotted region to assist accommodation and

I
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Figure 5 - Log detection threshold for camouflaged dot targets is
proportional to eccentricity. The effect of eccentricity is less for
larger targets.
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fixation. The target was viewed through an SRI image deflector mounted on a

double Purkinje eye tracker. The image was stabilized, then the subject

altered the wavelength difference between the two halves of the field,

adjusting the luminance of the variable half-field so that a luminance match

was maintained between the two halves of the field. The subject then set the

wavelength difference between the two halves of the field for which a boundary

was just visible. Figure 8 shows that the effect of stabilization on boundary

visibility was least in the yellow part of the spectrum, but in the blue and

red a much greater wavelength difference was required to create a visible edge

after stabilization then before stabilization.

Several different types of temporal modulation were then introduced.

First the luminance of the whole target was flickered at 0.5 Hz and 25%

modulation depth. This almost completely restored visual sensitivity to the

boundary. Next the luminance of the target was left constant and the whole

target was oscillated on the retina either with a 0.5 Hz, sinusoidal waveform

of ±0.3 deg amplitude or with a noise waveform. Again, this almost completely

restored sensitivity to the boundary. Finally, the outer edges of the target

were left stabilized while the vertical central boundary was oscillated from

side to side at 0.5 Hz. This modulation substantially restored boundary

visibility also.

We conclude that visual sensitivity to boundaries defined by chromatic

contrast alone is much reduced when temporal changes are removed, except when

the two wavelengths are on opposite sides of yellow. Visual sensitivity can be

substantially restored by several different kinds of temporal modulation

including luminance flicker and image mption. We suggest that luminance

flicker may restore boundary visibility by disturbing the equality between the

4 - -. . . .' '•: "••-" ." -i . i" i .. i ,..- ' . , ,, " -" .'i. . -. :'. - .
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stimulus luminance and the local level of retinal adaptation. This suggestion

is based on the idea that image fading occurs because the local state of

adaptation rises until it cancels the effect of the stimulus (Wright, 1957;

Burbeck & Kelly, 1982). In everyday vision, eye movements maintain boundary

visibility. In this natural situation retinal image movements are correlated

with eye movements. Our results indicate that a correlation between retinal

image motion and eye motion is not necessary for the maintenance of boundary

visibility.

"Channeling" concepts

Basic idea:- At the detection stage the brain splits up visual information

into separate packages by means of functional subunits. For example, there are

subunits for motion in depth, position in depth, frontal plane motion and

spatial frequency. A later stage in the brain responds to the relative

activities of different subunits - this explains very acute visual

discriminations, e.g. between slightly different colors or slightly

differently-sized objects.

Implications:- (a) Specific tests of specific subunits may predict

practical performance in different tasks. For example, visual tracking of

changing-size stimuli predicts low-level flying performance in real aircraft

(Kruk & Regan, 1983; Kruk, Regan, Beverley & Longridge, 1981, 1983). (b)

Losing a particular functional unit causes a predictable and specific visual

loss.

These several ideas are not new. I have recently reviewed the concept of

channeling as it applies to vision as a whole (Regan, 1982).

Independence of orientation and spatial frequency

The basis of the "channeling" approach is the idea that the visual system

S
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processes some visual dimensions approximately independently. (Note that these

psychophysically-independent dimensions need not necessarily be physically

independent.) In an experimental study (Burbeck & Regan, 1983, in press), Dr.

C. A. Burbeck and I applied this idea to the processing of spatial form.

It is widely accepted that the human visual system analyzes spatial form

information by means of subunits (channels), each of which is sensitive to a

restricted range of spatial frequencies and orientations. Many studies have

attempted to find whether different spatial frequencies are procrssed

independently, while others have attempted to find whether different

orientations are processed independently. However, a fundamental question has

not been addressed. Do orientation and spatial frequency constitute

independent psychophysical dimensions?

Using equipment developed at Dalhousie University, we measured spatial

frequency discrimination between gratings that were aligned (a) parallel and

(b) at right angles. Figure 8 shows that spatial frequency discrimination was

the same in caes (a) and (b). This held for gratings of spatial frequencies 2,

5 and 12 cycles/deg. We also measured orientation discrimination between

vertical gratings that were (c) of the same spatial frequencies, and (d) of

very different spatial frequencies. We found that orientation discrimination

(75Z correct) was the same ( 0.3-0.5 deg) in cases (c) and (d). This result

held for gratings of 5 vs 5, 2 vs 2 and 5 vs 2; 5 vs 5, 8 vs 8 and 5 vs 8

cycles/deg.

We concluded that, at the discrimination stage, spatial frequency

information is freely available across orientations, and orientation

information is freely available across spatial frequencies. Orientation and

spatial frequency constitute independent dimensions at the discrimination

. ,, - _. -, : -_ . . . ! . . - _:.. . .. . ,, . . . . - . . , . . ,: . _ . .., ,., .. , , . . . '
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stage. The situation seems to be quite different at the discrimination and

detection stages, since at the detection stage spatial form information is

packaged into many restricted cells in the spatial frequency-orientation plane.

Correlation between visual test results and flying performance in

telemetry-tracked aircraft

This study at Yuma has now been completed. It was partially described in

the Final Report for Grant AFOSR 78-3711.

Table I shows correlations between flying performance and the results of

both laboratory and airborne visual tests. Flying performance was measured in

air-to-air combat between A4 and F-14 aircraft. Laboratory visual tests

comprised a manual tracking task of frontal plane motion (TIl), a manual

tracking task of motion in depth (TA), and a suprathreshold velocity

discrimination task in which subjects viewed a radially-expanding flow pattern

and were required to judge which of two rates of flow was the faster (FF). The

airborne visual tests were carried out between two A4 aircraft flying towards

each other from a range of about 25 miles. One was designated as attacker. In

order to record visual acquisition distance the attacking aircraft was

instructed to fire a simulated missile on first sighting the target aircraft.

The target was instructed to turn sharply to left or right immediately on

hearing the audible firing tone from the attacker aircraft. This turn was

typically about 70 dog bank and 3G acceleration. The attacker was further

instructed to call the direction imediately on being able to discriminate the

direction of the target's turn. The attacker's ability to detect the direction

of the target's turn was measured in two ways: first as the angular

displacement of the target aircraft between the start of the target's turn and

the attacker's correct call, and second as the distance between aircraft at the

4%
--------------------------------- .. . . . . .
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Table 1

Correlations Between Non-smoking aircraft (N=6) Smoking aircraft (N=8)

r p r p

Acquisition range

kills/engagement 0.80 0.03 0.69 0.01
died/engagement -0.85 0.02 NS -
win/loss ratio -0.74 0.05 NS -
direction detect range 0.79 0.03 0.96 0.001
flow pattern threshold -0.60 0.10 -0.61 0.02

Direction detection range

died/shot at -0.77 0.04 NS -
died/engagement -0.88 0.01 NS -

win/loss ratio 0.79 0.03 NS -
kills/shot NS - 0.65 0.04
angular deflection -0.91 0.006 NS -

Angular deflection

shots/engagement -0.83 0.02 NS -
shot at/engagement 0.78 0.03 0.77 0.01
died/engagement 0.69 0.06 0.79 0.009
win/loss -0.85 0.02 NS 0.08

TI1 NS - -0.71 0.02

TAI 0.80 0.03 NS -

FF15 NS - -0.66 0.04

p POOLED r

Shots/engagement

TAI -0.67 0.01
TPl -0.67 0.01

"'' .... ... • - " " ,.. ...................... ....... ......... .. " ".
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instant that the attacker gave his correct call.

Our new findings concern the correlation between flying performance and

these last two measures. The correlation between the two measures was close.

They both correlated with combat success as measured by the win/loss ratio

(i.e. number of hits on opponents versus number of hits received). Judging a

leftward or rightward turn could involve the following two factors: (a) Visual

sensitivity to aspect, since the target aircraft assumed leftward or rightward

bank when changing heading; (b) visual sensitivity to frontal plane motion.

The angular deflection measure was intended to bring out sensitivity to frontal

plane motion. On the other hand, the importance of aspect has been emphasized

by Kennedy et al. (1982). In order to find whether sensitivity to aspect alone

could explain our findings we carried out a laboratory experiment using a

stationary three-dimensional model A4 aircraft whose aspect was varied by

setting it at the angles of bank for a left or right turn. Subjects judged

left and right bank at different viewing distance, and we plotted the percent

correct judgments on probability paper (Figure 9). Subjects' discrimination of

bank angle did not fall to 75% correct until the angular size of the model

aircraft fell to 3.3 min arc (subject KB) or 3.8 min arc (subject RP) ingtip

to wingtip. This corresponded to a viewing distance of 8226 meters (subject

KB) or 7130 meters (subject RP) for a real A4 aircraft. Our Figure 9 data

suggest that, providing the target aircraft's contrast is about 60% at 7300 m

distance or a little less, pilots could judge a change of heading merely by

detecting the angle of bank. The broken lines in Figure 9 show that reducing

target contrast from 60% to 30% is equivalent to a scaling factor.

One uncertainty about our laboratory study is that visual conditions in

the air and in the laboratory were, unavoidably, quite different. We tried to

.-
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Figure 9 - Ordinates plot on a probability axis percent correct
discriminations between leftward and rightward angles of bank of a
model A aircraft. The angular sizes of the aircraft are plotted as
abscissae. A and 3 show data for two subjects. Continuous lines are
for an aircraft of 60Z contrast, broken lines for 30% contrast.
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compare airborne distances with our laboratory data by normalizing relative to

visual acquisition distance. Therefore, we measured visual acquisition

distance in the laboratory. For the 30% contrast model, detection was 25%

above chance (75Z correct) when the model's angular size was 2 min arc (both

subjects), i.e. at a little less than twice the range at which change of

direction could be detected. For a contrast of 60%, detection was 25% above

chance when the angular size was about 1.8 min arc (subject RP) and 1.4 min arc

(subject KB). This comparison, however, is likely to favor the laboratory data

because of the lag while pilots made a motor response and because of the

pilots' initial uncertainty as to the location of the adversary aircraft.

Because laboratory subjects knew the model's location, because we used a 757

detection criterion (pilots would likely use a higher-certainty criterion), and

because there was no atmospheric haze, laboratory acquisition distances are

likely to be spuriously large. However, the roughly 1.6:1 to 1.9:1 ratio

between the two laboratory measures compares with the roughly 1.6:1 ratio

between mean visual acquisition distance for real aircraft and mean distance at

which change in heading was detected. This suggests that aspect alone could

account for discriminating change in heading in our airborne visual tests.
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